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THE EFFECT OF MOISTURE ON CAPJB0N FIBER REINFORCED EPOXY COMPOSITES
II MECHANICAL PROPERTY CHANGES.

It has been recognized that moisture can change certain
mechanical properties of fiber reinforced composites. Since
advanced composites are becoming increasingly important
for future Naval hardware application, it is necessary to
gain a better understanding of the mechanisms of the property
changes of these materials in their environment, and ultimately,
to predict their behavior and useful life time under service
environment.

Part of such an investigation of property changes of advanced
organic matrix composites in a humid environment is described
in this report. This is the second part of an investigation
which deals with the experimental results of the flexural
and shear strength changes on composites, before and after
humidity exposure, as a function of temperature.

This program was funded by the Naval Air Systems Command
(Task No. A3200000010123) during the periods of 1 July 1974
to 30 June 1976.

*J. R. DIXON
By direction
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INTRODUCTION

This report is the second part of an investigation of the
effect that moisture has on the properties of carbon fiber reinforced
epoxy composites. The first part, which has been published as
a technical report [1] de,,cribed the diffusion of moisture in these
composites. This report summarizes the mechanical property changes
we have observed when resin and composites samples were exposed
to humidity under controlled laboratory conditions. The loss in
resin dominated mechanical properties is of a reversible nature,
i.e., the original dry strengths can be regained after removal of
moisture (at least within the limitation of the sensitivity of
the mechanical testing). It seems that these moisture effects can
be explained, at least qualitatively, as a result of plasticization
of the resin matrix by moisture. No attempt is made here to analyze
the observed results in terms of laminated plate theory. This will
be the subject of a forthcoming technical report. How these results
can be related to real outdoor environments will also be discussed
in a separate report.

EXPERIMENTAL

Six carbon fiber epoxy composites were investigated for their
changes in strength after controlled exposure to moisture. The
fabrication cf the prepregs and composite panels are described in
Appendix A. The humidity exposure and mechanical testing of flexural
and short beam shear strengths as well as the torsional braid
analysis of the resins are described in Appendix B.

RESULTS AND DISCUSSION

In part I of this report we have discussed some background
infor.mation on the effect of moisture on carbon fiber .%mposites.
Suffice it here to say that in view of the importance of carbon
fiber composites for future Naval aircraft and other Naval hardware,
where high specific stiffness and strength is required, it is impor-
tant to gain a better understanding of the deterionation processes of
these materials, to know t0eir limiLations and to be able to predict

[1] J. M. Augl and A. E. Berger, "The Effect of Moisture
on Carbon Fiber Reinforced Epoxy Composites, I Diffusion,"
NSWC/WOL/TR 76-7
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their long-term behavior in service environments. Due to the complex
nature of organic matrix composites the predictions of properties
and failure become rather difficult,, especially, since failure
can be caused by various mechanisms. To predict the long-term be-
havior will therefore require a strong interaction of experimental
and analytical procedures. Part 1I of this investigation will
summarize some of our experimental observations leaving the discussion
of the analytical methods for long-term predictions to a forthcoming
report. Also, we are considering here only the pure moisture effects
and not the effects of superimposed thermal or mechanical cycling.
Such investigations are in progress and the results shall be reported
at a later date. The six composites investigated here were the same
unidirectional CF composites described in part I of this report.

A. Effect of Moisture on the Resin Modulus

1.1-aional braid analysis (TBA) was used to determine the change
of the relative modulus of various epoxy resins that had been exposed
to different relative humiditieb. The temperature scan was carried
out at a rate of 300C pcr minute from room temperature through Tg.
The high heating rate was necessary to prevent excessive moisture
desorption, even so, some desorption cannot be prevented. Figure 1
shows the thermomechanical behavior of the dry Narmco 5208 resin,
where Tp = ultimate projected service temperature in an aircraftl
Tl - onset of transition region between glassy and rubbery region
of the resin; T2 - intersection between the flat and the step
modulus-tenmperature curve, sometimes used as a definition for
the glass transition temperature; Tg - glass transition temperature.
heLe defined as the temperature of the maximal mechanical damping
of the resin. Figures 2 to 4 show the effect on tae resin stiffness
after the samples had been equilibrated at various relative humidi-
ties. (Figure 5 shows the effect of moisture on Hercules 3501 resin
which is another candidate resin for aircraft application. Its
behavlor is similar to Narmco 5208.)

From these measurements It is difficult to determine with
reasonable ac~curacy of what tne change in Tg is. However, what
is even more important, is that one can see that the resin moduli are
reduced over a wide temperature range; for 5208 even dow:n to room
temperature. Without discussing the quantitative details here, such
a chAnge in resin modulus will also change the resin dominated
composite moduli (E22 and G12) and the reelln dominated strengthu (ST22,
SC22, SS12, and SCll). (E22, G12, ST22, SC22, SS12 and SCll indicate
the composite transverse modulus, the longitudinal shear modulus, the
transverse tensile strength, the transverse compressive strength, the
longitudinal she4r strength and the longitudinal compressive strength
respectively.)

In all cases of the resins investigatod it was found that the
dry modulus curve was regained after the moisture was removed.
This indicates a reversible plasticization of the resin with moisture,
at least within the sensitivity of the instrument and within the
* t(:erature range that had been scanned. Th.'s made it possible to use

p•6



NSWC/WOL/TR 76-149

a single resin specimen for the exposure experiments, thus eliminating
the effects of slig..tly different braid geometries.

B. Effect of Moisture on the Flexural Strength of Unidirectional
Carbon Fiber Composite.

The composites were prepared to a fiber volume fraction of
70% + 1. The samples were tested dry and after three weeks of
humidity exposure (at 750 C and 80% RH). The results are given in
Table 1. Figure 6 shows the change in flexural strength of the
six composites before moisture exposure. The T300 composites show
higher strength values than the HMS composites but seem to fall off
more rapidly with increasing temperature. An explanation may be
that the T300 fiber had a proprietary epoxy sizing while the HMS
fiber had no sizing at all. (Also, it appears that there may be
a larger difference in the real strength of the HMS and T300 fibers
than given in Table 2.) Figures 7 through 9 are graphs of the percent
strength retention (before and after humidity exposure) as a function
of temperature. Figures 10 through 15 are three dimensional projec-
'tions of the flexural strength profile of these composites for the
benefit of an easy and quick overview of the combined moisture and
temperature effects. (The crossbars indicate the standard deviation
of five test samples.)

C. Effects of Moisture on the Interlaminar Short Beam Shear Strenqth
of CF Composites.

The interlaminar shear strength changes, determined on the same
set of composites, were similar to the flexural strength changes.
Again, the T300 fiber composites show a somewhat stronger temperature
effect than the HMS composites (see Figure 16). Figures 17 through
19 show the percent strength retention of the dry and exposed samples.
As in case of the flexural strength, the shear strength decreases with
increasing temperature and increasing moisture content, Figures 20
through 25 show three dimensional projections of the interlaminar
shear strengths of the composites as a function of temperature and
moisture content.

D. Shape of the Interlamintr Shear Strength Degradation.

it was important to know whether or not the strength degradation
would continue after the composite had been saturated with moisture
and also to determine the shape of the degiadation c, rye. Six sets
of she~ar specimens were exposed to an accelerated moisture absorption
at 730C and 80 percent RH. The results of their strength degradation
are given in Table 3 and Figure 26. The samples were exposed longer
than necessary to reach 95 percent of their equilibrium c',-;entration.
(Eatimates of how long it takes to reach a particular fraction of
the equilibrium coticentration can be easily obtained when the
diffusion coefficient of moisture in the compusite is known, see
Part T of this report. [I]

41 7
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Table 2: Caibon Fiber Propertiesa

Properties Hercules HMS Thornel 300

Strand Modulus, psi x 106 5s - 55 33 - 34.5
(G P3sc.) (345-379) (227-238)

Strand BT:fik Strength, psi x 10 340 (2.34) 361 (2.49)
(G Pasc.

Density, j/cc (lot average) 1.85 - 1.90 1.74 - 1.78

Filament liameter, microns 7.2 - 7.5 8

Number of Filaments 10,000 3,,000

a) The data were obtained from the manufacturer
at the time of purchase.

9
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Table 3

Change in Short Beam Shear Strength of Narmco 5208/HMS as a Function of
Exposure Time (after Exposure at 750 C and 80% RH;

Test Temperature: 1250C)

Exposure Avg. Moisture Coeff. Var. (%) S. B. Shear Coeff. Var. (%)
Time, Uptake, Strengthdays Percent MPasc. (KSI)

0 - - 73.16 (10.61) 13.68

1 .347 9.57 73.74 (10.70) 8.82

4 .561 8.9 74.19 (10.711) 8.30

10 .667 5.0 69.70 (10.11) 11.31

28 .805 19.11 52.72 (7.65) 17.84

66 .854 5.15 46.62 (6.76) 8.15

115 .906 9.20 48.45 (7.03) 18.0

, a) An avecage of six specimens were tested for
each exposure condition.

10
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From Figure 26 it can be seen that the interlaminar shear
strength does not fall as rapidly as one might expect from the rather
rapid increase of moisture content. However, this can be easily
understood if one considers the internal moisture distribution in
the composite at the time of testing (see Part I on moisture distri-
bution) and the stress distribution in a short beam shear sample.
While the higher shear stresses are generated in the center plan
of the composite, this area has initially the lowest moisture content.
Therefore there is a lag in strength degradation. On the other
hand, the shape of the flexural strength degradation should be some-
what different since the maximal stresses are generated at the surface
layers where the humidity saturation level is reached rather quickly.
Thus the initial shape of the degradation curve is domineted by
the failure mode and the distance of the initial failure (leading
to catastrophic fracture) from the exposed nurface.

The strength degradation caused by resin plasticization. through
moisture stops however after moisture equilibrium is reached. There.
is no essential difficulty to predict the time to reach moisture
equilibrium in a composite, or any fraction of it, if the environ-
mental temperature and moisture fluctuations are known (from weather
data for instance). How to do this by simple averaging procedures, or
more precisely by use of a high speed computer, will be discussed
at a later date.

E. Reversibility of Flexural and S.B. Shear Strengths Losses.
Y,! A set of each composite was redried after the 3 weeks exposure

to 80% RH at 750C by heating it for 96 hours at 1200C in vacuo.
In all cases were the flsxural and shear strengths comparable with
the original strengths within the experimental errors. (The testI temperature was 1250C.) This is an other indication that the loss
in strength after humidity exposure is due to resin plasticization
and is reversible at least wihin the sensitivity of the mechanical
testing.

CONCLUSIONS

1. The epoxy matrices investigated in this work all absorb
moisture which leads to a substantial reduction in the resin modulus
even at temperatures well below glass transition temperature. Thus
moisture acts as a resin plasticizer. This effect is reversible
after the moisture has been removed again, at least within the
sensitivity of the test method.

2. 7r all cases it was observed that the matrix dominated
strength properties of the composites (flexural and shear strengths)
were reduced aýt'r the samples had been exposed to moisture. Again,
within the sensitivity of the test methods, this strength degradation
is reversible, i.e., after removal of the moisture the original
strength values were regained.

ii

| in u • •l.,ll • i.,. . _. t.... i r i n I ! ... -- V



NSWC/WOL/TR 76-149

3. The loss in strength levels out after the composite has
reached equilibrium with the humidity of che surrounding environment.
The shape of the strength loss curve with time depends probably
on the failure mechanism and on the distance of the initiation site
of catastrophic failure from the exposed surface.

RECOMMENDATIONS

1. It is recommended that further experimental investigations
of moisture effects be carried out on crossplied laminates since
these composites may be more sensitive to the formation of internal
stresses, due to moisture swelling, and to temperature changes due
to mismatch between the thermal expansion coefficients of resin and
fiber.

2.. We further recommend that the laminated plate and shell
theory be expanded to include moisture and temperature effects.
This could be accomplished by incorporating the variability of the
matrix modulus (as a function of moisture concentration and temper-
ature) into the stiffness tensor of tVie laminate. It is expected
that the continuously changing matrix modulus through the thickness
of the composite can be approximated successfully by a finite differ-
ence approach, so that no major change will be required in the
formalism of composite analysis.

12
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Appendix A

MATERIALS

A. Resins

The resins used for the prepregging operations were:

1. Narmco 5208 (a commercial resin manufactured by the Whittaker
Corporation, Narmco Division). It is a one component system (resinplus curing agent);

2. DER 332/DADS. The resin system consists of 100 parts of
DER 332 (a di~lycidyl ether of bisphenol A) and 36 parts of DADS
(4,4' diaminodiphenyl sulfone).

3. Epon 1031/NMA. This resin consists of 100 parts of Epon
1031 (1,l,2,2-tetra (p-glycidyloxyphenyl)ethane), 77 parts of Nadic
methyl anhydride, and 1 part of BDMA (benzyldimethylamine).

B. Fibers

1. Thornel 300. This material was obtained from Union Carbide
Corporation and consists of a continuous strand of 3,000 filaments
which have an epoxy sizing for better handleability. (For properties
reported by the manufacturer see Table 1.;

2. HMS fibers. This material is a tow with 10,000 continuous
filaments manufactured by the Hercules Corporation. The fibers
had no sizing. (For properties reported by the manufacturer see
Table 2.)

C. Prepregs

The prepregs were made by filament winding the dry carbon fiber
yarn onto an aluminum cylinder (60 cm in diameter). Before the
winding operation two strips of double sided adhesive tapes were
placed onto the cylinder surface (parallel to the direction of the
cylinder axis). A 60 cm wide band of fibers was now wound onto
the cylinder. Then two more adhesive tapes were placed over the
first strips so that the band of fibers was held in place. The
winding density of the T300 fibers was 15.48 strands per cm width
and the density of the HMS fibers was 3.72 strands per cm. A cut
was made between the adhesive strips so that the band of carbon
fibers could be transferred to a flat table (covered with a mylar
film) by carefully lifting it up fro-i the winding cylinder. The

13 A
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fiber band was now stretched on the table and fIxed with the adhesive
tape. A sixty percent solution of the resin in acetone was carefully
poured over the fiber band. The amount of resin used was adjusted
so that the ratio of resin to fiber was such that a prepreg with
40 weight percent of resin was obtained. The impregnated band was
then covered with a 1 mil Teflon film and the resin solution was
carefully worked into the fiber band by means of a rubber roller.
The Teflon film was then removed to allow the acetone to evaporate
(beware of fire hazard! The prepreg was cut into 241 x 23 cm sheets.
The imylar backing was removed just before stacking to form the
laminate by rubbing the Mylar film with dry-ice. This made the
tacky resin brittle enough to allow to pull off the Mylar backing.

D. Laminate Fabrication

The unidirectional laminate plates were fabricated by a combined
vacumn pressure technique. The 41 x 23 cm prepreg sheets were stacked
and placed onto a steel plate between layers of porous materials
to allow resin bleeding. The layup was as follows: (1) Al-foil,
(2) bleeder paper, (3) porous teflon, (4) thin glass scrim cloth,
(5) laminate, (6) thin glass crim cloth, (7) porous teflon,
(8) bleeder paper, (9) perforated metal caul plate, (10) two layers
of thick 181 glass cloth, and (11) Silicon or Mylar cover film that
was sealed with a zink chromate sealing compound. On one side of
the steel plate had a channel drilled through which vacuum could
be applied (see Figure 27).

The whole assemblage was placed between the preheated plates

of a Preco press to be cured under pressure and applied vacuum.

The curing conditions for the composites are given in Table 4.
After cure the panels were allowed to cool over night under pressure.
They were post cured between metal plates in an oven at 2040C for
4 hours. No significant difference in strength was observed between
panels post cured in air or under nitrogen. The average panel
thicknesses were 0.203 cm.

14
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Appendix B

Mechanical Testing and Humidity Exposure

Flexural and short beam shear specimens were machined (size:
8.9 x 1.27 cm2 and 1.45 x .635 cm2 respectively) and tested under
3 point loading before and after humidity exposure. The samples
were considered dry after heating for 96 hours at 1200C in a vacuum
desiccator (no further weight loss was observed after this time).
The humidity exposure conditions were: 80 percent relative humidity
for 21 days at 750C. (A beaker containing the samples was placed
into a wide-mouth screw cap container (23.5 cm high, 11.5 cm diameter).
A potassium chloride-water mixture (2 cm high, with undissolved
solute) served to maintain 1he relative humidity constant at 80
percent. The container was closed and kept submerged in a water
bath at a temperature of 750C + 10). The results are given in Teble 1.

To determine the shape of the shear strength degradation curve.
one set of samples was exposed up to 115 days. These results are
given in Table 3.

* The mechanical testing at elevated temperature was carried
out in an environmental chamber with forced air heating. By placing
a thermocouple in the center of one specimen it was established
that it required three minutes to equilibraLe the sample to the
chamber temperature. To minimize moisture desorption during testing
three minutes were allowed for all specimens for temperature
equilibration before the load was applied.

Torsional Braid Analysis (TBA)

The Torsional Braid Analysis of the resins was cerried out
with a Chemical Instrument Corporation Torsional Braid Analyzer
Mod 100-1R. The method of TBA has been described in two review
articles [2, 3] by J. K. Gillham and will not be discussed here.
The braid samples were impregnated with the same resins as used
for the panel fabrication and cured under the same condition as
the composite panels. (The cure and post cure were carried out
inside the TBA instrument under nitrogen atmosphere at atmospheric
pressure. )

After the resin had been cured the "dry" rigidity curve was
determined.

2] J. K. Gillham, Rev. Macrom, Sci. 1, 83 (1972)
3 J. K. Gillham, AIRCHE Journal, 20, 1066 (1974)
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The same sample was then used to determine the change of the
rigidity after exposure to moisture. The exposure time of the thin

t braid to various levels of moisture was ten days in each case which
was sufficient to let the braid come to equilibrium.

in order to prevent excessive desorption of moisture during
the temperature scan the highest heating rate (300C per minute)
was used for the determination of the rigidity curve. Even at these

w high heating rates some moisture will desortb from the resin, therefore,
4 these curves have to be considered as upper limits in the reduction

of resin rigidity. Since it was found that the original, dry rigidity
curve, was regained with each resin after the moisture had been
removed, only one sample each was used to determine the change in
the modulus curves as a result of exposure to various levels of

relative humidity. The results are shown in Figure 1 to 5.
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* ~FIG. 2 EFFECT OF VARIOUS RELATIVE HUMIDITIES ON RESIN MODULUS
(DETERMINED BY TBA AFTER 10 DAYS EXPOSURE. RESIN: NARMCO 520).
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FIG. 6 FLEXURAL STRENGTH OF CARBON FIBER COMPOSITES AS A
FUNCTION OF TEMPERATURE (BEFORE EXPOSURE)
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